If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16q^2+200q-45=0
a = 16; b = 200; c = -45;
Δ = b2-4ac
Δ = 2002-4·16·(-45)
Δ = 42880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{42880}=\sqrt{64*670}=\sqrt{64}*\sqrt{670}=8\sqrt{670}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-8\sqrt{670}}{2*16}=\frac{-200-8\sqrt{670}}{32} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+8\sqrt{670}}{2*16}=\frac{-200+8\sqrt{670}}{32} $
| u/2=1 | | 157=83-x | | 5w+85=180 | | 13+2x=3(−x+8)−36 | | 3h-7=5 | | 10+u/3=0 | | 2.1x+0.7 = 7 | | 8x+12-6x-15=-2 | | 12(-4x-23)=17(x+3) | | 6n=1414 | | 0.6x6-9x=16 | | 5x+3=125 | | a-24+a+33=129 | | -7(x-15)=-105 | | 56=2+6d | | 15x=68,10-x | | 2/3x6-9x=16 | | 2u+u+17=125 | | -4(3x+5)=-6 | | 13+13x=2(20x+17)-x | | 7.5=45+1.5z | | 236532+218341x=215325 | | 14x=81+5x | | 3u+17=125 | | 236532+218341+x=215325 | | -10+3x=4(17x+24)-x | | -5x-8+7x=-2 | | 495x-3)+5x-3=-215 | | 2x-17=7x+16=4x-1 | | c-1.053=17.61 | | 168-w=239 | | 3x+142=4 |